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SUMMARY

Two annular diffusers of dlfferent conicel angles of expansion
but constant oubter- dlameters have been investigated with rotating flow
behind a fan. The performance characteristice have been determined and
the rotational-kinetic-energy effects on the over-all energy transfor-
mation were observed over & range of inlst Mach numbers from 0.l
to 0.55 and at angles of flow up to 28°. A wide range of flow distri-
butions was encountered as a result of changes In operating conditlons.
The over-all performance of the 8° diffuser is shown to be substantially
better than that of a 16° diffuser under comparable conditions for the
range of Mach numbers and angles of rotation tested. Reglons of meximum
efficliency were found at angles of inflow approximately equivalent to
the conical angle of expansion of the diffusers and agalin under
conditions epproaching exliel flow. Sherp reductions 1n efficiency were
recorded in both diffusers at the maximum values of streem rotation.
The radial pressure gradlient caused by the rotation of air assisted
divergence of the flow; however, at the large angles of rotetlon, an
adverse condition resulted from the inflow of low-energy air which
In turn caused separation of flow on the inner wall. The rotational-
kinetic-energy loss was neglligible at the low angles but became
appreciable at the maximum angle for low Mach numbers. This loss was greater
for the 8° diffuser, but the over-all diffuser efficiencies remsined

higher than those of the 16° diffuser for carresponding test conditions.

INTRODUCTION

Diffusers for alrcraft may be reguired to operate behind fans and
turbosuperchargers which discharge the flow with considersble rotation
from the annulus. It appears probable that the aerodynamic performance
of such systems will be strongly influenced by the presence of this
rotational component of flow. Of the great mass of diffuser per-
formence data avallable, relatively little 1s directly applicable to
aircraft problems dealing with roteting Fflows.
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Viillers (reference 1) in 1933, exploring the performance of
rectangular diffusers for heating and ventilating application reported
variations in efficiency with degree of rotation, and indicated the
-exlstence of a value of rotation for which the efficiency was a maximum.
Peters (reference 2) studied the performence of conical diffusers under
conditlons approaching solld-body rotation. In these experiments both
the inlet veloclty profile and the degree of rotatlon were varied
separately with & maximwm inlet Mach number of about 0.12. For the -
conical diffuser with solid-body rotation Peters concluded that, "A com-
parison with the efficiency in pure axial flow revesls a merked incresase
as the spiral becomes more intense." Patterson (reference 3) discussed
the work of previous experimenters and concluded that the vortex
rotation produced by fans tends to improve the efficiency of ordinary
diffusers when the rotation is small.

The independent variables in the flow characteristics at the
diffuser inlet such as the velocity profiles and the turbulence Pfactor
have a combined influence on the energy transformation in the diffuser.
Complete analysls of the individual factors influencing the performance
of a diffuser in this type of flow is not feasible nor is i1t apparent
that the mutual Interference effects would not be of greater magnitude
than the individual effects. The current research, therefore, was
undertaken to determine the combined effect of all the variables over
a representative range of operating conditioms.  In order_to
accomplish this, performence measurements were made of two annular
diffusers, operating in flows generated by a representative axial Pfan.

The investlgation was conducted in the Langley induction aero-
dynemics laboratory of the National Advisory Committee for Aeronautics
using two annular, straight-wall diffusers with constant ocutside
diameters and with conlcal inner bodles. One diffuser had an 8° and
the other a 16° equivalent conical angle of expemsion; the area ratio
of both was 1.9. Stream Mach numbers ranging from 0.1 to 0.55 and a
range of inlet angles of rotation from 0° to 28°. were included in the
test conditloms. _ .

The Reynolds numbers fér the rgnge of tésts:included_in the

subject research were 0.35 X 10% to 1.79 x 10°. The method of
calculation ls presented in the appendix. ] _ _ R

SYMBOIS
c velocity of sound, feet per second
Fc compressibility factor . . . e - -
H total pressure, pounds per sguere foot, or centimeters of

alcohol, as indicated S o - . =
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M Mach number .(V/c)
m mass flow, slugs per second
P static pressure, pounds per square foot or centimeters of

alcohol, as Indicated

q dynamic pressure, pounds per square foot
Re Reynolds number
r radius
v veloclty of air in diffuser, feet per second
1 diffuser efficlency (l - A—%)
fave}
6 polar angle along circumference of duct, degrees
B coefficlent of viscosity, slugs per foot-second '’
o) density of air, slugs per cublc foot
¥ angle of rotation in air flow, degrees
M total pressure loss, pounds per square foob
ANp change in static pressure, pounds per square foot
Ng change In dynemic pressure, pounds per square foot
Mg loss coefficlent
91
Subscripts:
a axial ’
r resultant
i Immer conlecal body
o outer duct wall

1 inlet station
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2 exlt statlion
ref reference statlon upstream of fan

Bar over symbol indlicates & welghted average quantity.
APPARATUS

The experimental equipment used is shown In figures 1 and 2. The
equlpment consisted primsrily of two annular stralght-wall diffusers of
constant outside dlameter and area ratio, 1.9 to 1, flgure 3. All
internal surfaces were filled and polished.

The air entered the setup through a 48-inch-dlameter screemed bell

inlet to distribute the air evenly to the annulus. The air passed through

the annulus to the fan and then entered the test section. A 24-blade

single-stage axial-flow fan, reference 4, was used to impart the rotation

to the air flow. The blades were RAF 6 section, had meximum thickness
of 12 percent of the chord and set at 63° from plane of rotation. The
mass flow of alr passing through the setup was controlled by an

exhauster which was connected to the ducting at the exit of the diffuser.

Inlet and exit cross-sectional pressures and flow angles were
measured by a remote-controlled survey rake shown in figures 4(a)
and 4(b). The rake conteined a total-pressure tube, a static tube and
two yaw tubes. All readings were recorded after the rake was alined
with the flow. The rake tubes were conmeé¢hed to & multiple-tube
mancmeter board. Measurements were made at three inlet stations,
120° apart, and three exit stations 120° apart, figure 5. In addition
to the rake messurements three outer wall statics were taken at the
inlet and exit stations on the seme plane with the reke.

In the diffuser section, wall static orifices were placed along
the length on the outer duct wall and the conleal Inner body wall. The
statics were placed In line with {he rake positions, therefore glving
three rows of static orifices (12 per row) 120° apart along the outer
duct wall and three rows (13 stations per row) of inner-body wall
statics 120° apart as indicated by figures 4(a) and 5. Stagnation
air-stream temperatures were measured in front of and behind the fan
by thermocouples comnected to & sensitlive potentiometer...

PROCEDURE

The test conditions were established by récording dats at various
fan speeds at a given flow Mach number. For comparison purposes the
seme fan speeds were used for each Mach number, the range of fan speeds
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depended upon the limitations of the fan motor. For every fan speed at
a given Mach number, the static and total pressures and the angle of
rotation were measured across the annulus at the three inlet and the
three exlt measuring stations. The exit conditions were not measured

at the same tlme the inlet conditions were recorded because rakes
installed at the inlet would disturb the flow downstream. Measurements
at the inlet and exlt were taken wlth reference to the total pressure
behind the screen in the bell. Intermediste wall statics at the

inlet and exit measuring statlons were recorded to check the accuracy of
the static-pressure traversing tube. After the flow conditions at both
Inlet and exit statlons were recorded, photographic records were made of
the six lines of wall statics along the outer duct wall and the conical
inner body wall. Air-flow temperatures were recorded for each test
condition.

The following procedures have been used 1n the reduction of data
presented herein: The angle of flow has been measured relative to a
plane through the center line of the duct. All stream pressures have
been measured with instrumentetlon alined with the flow. Mean values
of angle and pressure were calculated from mass-welghted averages as
indicated 1In the appendix. An average of the values at corresponding
points for the three measurling statlons was used to 1llustrate the
pressure and flow aengle distributions across the ammulus of the duct.
Two coefficients have been used in expressing diffuser performance,
one & loss coefficient based upon the mean inlet dynamic pressure and
the other diffuser emergy efficiency based upon the measured difference
In dynamic pressure at the inlet and exit.

Loss coefficient =

=

Diffuser energy efficiency = 1 - %% (See reference 5 and appendix.)

The exit survey station was located somewhat downstream of the apex of
the inner body cone in & reglon where the static pressure approached a
maximum value. Wall statlc pressures presented are referenced to the
mean inlet total pressure. The Reynolds number was calculated from the
equation presented in the appendix which employs the hydraulic diameter
of an annular section.

RESULTS AND DISCUSSION

The results of thls investigatlon are given in tebles I and II.
Values of total and static pressure presented are refersnced to the
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total pressure upstream of the fan. Diffuser performance has been

expressed as a loss coefficlent QE and an enérgy oefficiency 1 - %%
9

calculated for the resultant and axial com@onénts of vei;éity.

The performence of the 8° diffuser over the range of test
conditions is shown in figure 6, which shows spot values of energy
efficiency (nr) on a field having mean flow angle &s ordinate and
inlet Mach number as abscissa. Graphs of the associated inlet velocity
distribution, presented as the ratlo of local velocilty to mean velocity,
are centered upon individual points for which efficlency is given. The
top horizontal line of each square represents the inner body wall and
the lower horizontal line represents the outer duct wall. The left-hand
line of the square is a "0" reference line while the right-hand line
denotes. unlity.

Although these data show certain irregularities in performance over
the entire field, several definite trends can be established. In general

the highest efflciencies (nr_? 95 percent) occurred at inlet rotationsl _;_'

angles close to 8° and a secondary maximum with approximately axial
inflow. Between these two regions, at V¥ = 4°, several values of Ny On
the order of 80 percent were recorded. The only explanation for this
result at 4° at the present is possibly a stall condition. Sharp
reductions in efficiency were also noted at very high rotational angles.
No clearly defined trend with Mach number at fixed angles of inflow
could be established. It is not surprising thet these irregularities
should exist in view of the many variaebles in the flow that could
influence boundary-layer phenomens and energy transformation.

The low efficiencies at the larger rotatiomal inflow angles may be
explained in the following mammer: Although the radial pressure gradlent
caused by the rotation of the air assists the divergence of the flow,
1ts effects are nullified by the centripetal flow of low-energy air
which in tuwrn induces flow separation on the immer wall. Typlcal curves
of total and static pressure and flow angle are presented in figures 7, 8,
and 9 for diffuser entrance Mach numbers of 0.l and O.4. With increasing
mean angle of lnlet flow the total-pressure dlstribubtlon changed
significantly; static-pressure and flow-angle distribubion on the
contrary were essentially constant throughout the range of this
investigaetion for Inlet conditions. The location of the total-pressure
peaks can be correlated with the theory for this type of flow that the
kinetic energy and rotational velocity are a maximum at the center of
the duct and are small in comperison neer the walls. The circulation
is assumed to be constant-at the diffuser inlet. -

In many installations the flow distribution at the exit is of con-
siderable importance. At a Mach number of 0.1 the total pressures across
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the exit, figure 7, indlicate increasing loss along the inner wall as the
mean inlet angle increased, and a general shifting of the flow toward
the outer wall. At a Mach number of 0.4, large losses in total pressure
occurred along both duct walls but within the range of these tests no
change in general shape of the curves occurred. The static pressure in
the exit, figure 8, decreased smoothly from the outer to the inner wall,
the magnitude of the difference in pressure increasing with angle of
inlet flow. Although an extensive boundary-layer investigation was not
conducted, tuft surveys and the pressure distributions indicate that
these losses near the walls at the high angles are probably due to
boundary-layer separation. Comparison of the curves of flow angle at the
inlet and exit, figure 9, shows a marked increase 1in rotation as the air
was slowed down. This effect indicates that the angular momentum is
generally constant and any slight loss of momentum is due to viscous
action as expected. Preliminary friction-coefficient calculastilons
indicated that the viscous forces are small. The increase in measn angle
of flow at the low velocity shown in figure 9 was accompanied by a
change 1n distribution from relatively uniform rotation in the inlet to
a nonuniform gradient with maximum angle of flow at the inner wall at
the éxit. It 1s noted that the maximum angle of flow and the lower
values of total and static pressure occurred in the same region. A%L
inflow angles of 17.8° and 28.3° the maximum angles near the inner body
wall approached 90° which i1s an added indication that reversed flow

due to boundary-layer separation appeared &t the inner body wall.

The static-pressure dlstribution along both duct walls is shown
for M; = 0.1 and 0.4t in figures 10(a) and 10(b), respectively. The
decreasge in static pressure at the base of the inner body cone indicates
local acceleration of the flow. The decreasing statlc pressure over a
laerge part of the cone at ;i = 28° 15 a result of increased rotation

and loss of total pressure along the inner wall. Althougy the exact
location of flow separation has not been determined for *l = 289,

experimental investigations showed that separation occurred well upstream
in the vicinity where the static pressure begins to decrease. The
atatic pressures in these plots serve another function in that they
indicate the stage of energy transformation in the diffuser. Im
references 2 and 6 the authors have ghown that the rise in pressure

may not be complete at the flnal section of the diffuser and the
necessity of adding discharge ducting for complete pressure conversion,
The sgtatic pressures in figures 10(a) and 10(b) indicate that the energy
transformation was complete or near complete and that no additional
ducting was necessary. The few wall-gtatlic curves that indicate an
incomplete pressure rilse .on the plots have been extrapolated by using
the static pressure at the exit measuring station as an end point, and
the slope of the finsgl position of the extrapolated curves indicated
complete pressure rlge for all conditions. For rotating flow of this
type the need for additionel discharge length behind the diffuser

exit is not as criticael as for axisl flow.
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The efficlency of the 16° diffuser is shown in figure 1ll1l. Over
a large part of the range of these tests the efflcliency varied
between 75 percent and 88 percent, with maximum values occurring at
mean inlet angles of 2° and 15°. Values of efficiency less than 75 per-
cent were obtained only at the very high values of inlet angle or Mach
numbér. Comparlson of these data wlith similar results from the
8° aiffuser shows a range of differences in efficiency up to 20 percent,
higher efficiency having been obtained with the 8° diffuser. These
differences in efficiency may, in part, be caused by differences in
inljet flow distribution at otherwlee comparable conditions. As in
the case of the 8° diffuser the highest efficlencies for the 16° diffuser
were obtained for an inlet angle of flow approximaetely equivalent to
its angle of diffusion. Because the 16° aiffuser requires a large
angle of -rotation to reach its optimum efficiency, its over-all
rerformance 1s not as efficlent as a diffuser that can operate at a
lower angle of rotation, a range where the rotation is beneficial to
the dlverging flow.

Typical curves of total pressure, statilic pressure, and angle across
the inlet and exit of the 16° diffuser are presented in figures 12, 13,
and 14. Inspection of these curves shows the same trends as were
observed in the results of the 8° diffuser tests. In making these
comparisons 1t should be kept 1n mind thet the _inlet and exit survey
stations were the same in both tests, L48 inches from the inlet station.
This system established the exit measuring station at 5 inches from the
smallest diemeter of the cone for the 8° diffuser and 24 inches for
the 16° diffuser. The static pressures along both the inner and
outer duct wall are presented in figures 15{a) and 15(b) for Mach )
numbers of 0.1 and 0.4. These curves bear a marked similarity to the
curves for the 8° diffuser but have higher slopes. The negative slope
of the pressure gradient along the cone in the 8° diffuser is also
observed in the 16° diffuser but occurs first at a somewhat lower value
of inlet angle.

The efficlencies are also presented in tables I and II as functions
of the axlial component of veloclty or the change of kinetic energy in
the axial dlrection. These efficlencies do not cherge the diffuser
with the loss of residual rotational. energy.

A comparison of n, eand N, shows that tﬁe rotational energy losses

are negllgible for both diffusers for angles of rotation up to 20°. For
angles greater than 20° the rotational losses become appreciable at the
low Mach numbers, M = 0.1 and 0.15. With an increase of Mach number,
however, the losseg appear to decrease for a& constant angle of rotatlon.
For the range of flow angles and Mach numbers tested the 8° diffuser
has a higher over-all performance consldering elther M OF M-
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CONCLUDING REMARKS

The present investlgation has led to several definite conclusions
concerning the performance characteristics of a conlcal diffuser of this
type handling rotating flow behind a fan and the Influencing effects
of rotational energy on the over-all energy transformation process. The
over-all performance of the 8° diffuser was substantially higher than
that of the 16° diffuser under similar inflow conditions and for
Mach numbers through 0.55 and angles of rotation from 0° to 28°.

Regions of hlgh recovery were found with essentially axial flow and
agaln at an angle aspproximately egulvalent toc the angle of expansion of
the diffusers. The rotatlonal energy losses are negligible at the small
angles but become more appreclable for angles greater than 20° at low
Mach numbers. The rotational energy losses are greater for smaller
angular diffusers operating at low Mach numbers and high angles of
rotation similar to those included In this investigation. Because of
the large concentration of rotational klnetlc energy In the center of
the duct an adverse pressure gradlent 1s established in flows near the
inner wall, resulting in boundary-layer separation. In addition, 1t
appears that the beneflcial characterlstics of a radlal pressure gradient
for diverging flow at the larger angles are nullified by the increased
rotational kinetic energy that 1s not transformed to pressure. .

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Alr Force Base, Va.
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APPENDIX
COMPUTATION PROCEDURE FOR WEIGHTED AVERAGES,
EFFICTIENCIES, AND REYNOIDS NUMBER

2n ry - -
\/; J[ H dm :
— r .
E: i i
2n re ot
JF dm -
(s} I‘i

The. welghted total pressure is obtained from the relationship

-~ (1)
IR = T -
_MOo vIy Fe P _
2x pry . o
JE - p /28
'/; STy . P\E i dr_dB

i

P, 4, and ¥ are calculated in a similar menner.

The diffuser efficiency is determined by the amount of kinetic

[

as the rise of statlc pressure to the. change of dynamic pressure.
AP
T]r=.-—p-

NF
used in this report

(3)

From equation (3) an expression of efficiency is obtained which is
nI‘

i, -f,
1--+ 2
The efficiency Mg

a1 - 42

(%)

1s obtained from the following

energy that 1s converted to poten%ial energy. ‘Efficlency is expressed
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The Reynolds number is derived from the relationship

. . Dvl
Ry = —E—-x Hydraulic dilameter

4 x Area of anmnulus
Wetted perimeter

Hydraulic diemeter =

Therefore for an annular diffuser

ey
Re = __—‘.Ll(d.o - d-i)
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Filgure 1.— General view of test apparstus.
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and angle of flows tested.
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